The Transport Strategy Centre (TSC) works directly with over 100 major providers of metros, light rail, bus, rail, and airports across the globe. We facilitate annual programmes of international transport benchmarking across eight consortia (including CoMET and Nova) to identify actions that will lead to superior performance in transport operations and management.
As a result of the COVID-19 virus outbreak, transport providers are having to make substantial changes to how they manage their organisations and serve their customers. The members of the benchmarking groups facilitated by the TSC have been sharing valuable information about how they are responding to the outbreak. A summary of these practices and approaches used by the transport sector has been produced, in order to help other transport organisations optimise their responses.This can be found on the TSC website here.
Changes to metro station staffing models are being driven by several factors, such as customers’ increasing expectations in stations and opportunities to use staff for the highest value-adding activities. This Station Staffing Models study identified key drivers behind the decisions and policies governing staffing models and the key enablers for effective station staff deployment.
There are primarily four station staffing models that metros use. Staffed stations with primarily multifunctional staff and/or specialist staff are the most common station staffing models.
Over half of responding metros reported significant changes to staffing models in recent years. The study therefore discussed optimal staffing model in metros based on passenger volumes, station types, roster patterns, level of automation, and digitalisation initiatives, etc. Further changes in staffing models are expected to increase as customer needs, station facilities and cost structures evolve in the future.
Signage is designed to convey information primarily to assist passengers with decision-making, therefore factors such as clarity, visibility, safety, accessibility, applicability and style are important elements to take into account in signage design. Good signage communicates with passengers effectively by using clear messages, appropriate shape and size, recognisable symbols and infographics, legible typefaces/fonts and clearly contrasting colours.
The study gathers information from 28 CoMET and Nova metros and looks into their guidelines for signage design, as well as good examples that have been implemented by metros. These examples are presented by exploring six key objectives: signage for clarity, signage for branding and identity, signage for safety and security, signage for wayfinding and navigation, signage for accessibility, and signage to encourage good behaviour. The enhancements carried out by metros to improve clarity, visibility and legibility of signage are also discussed in the report. Currently, metros are exploring various approaches to complement their static signage with new types of dynamic information to encourage greater passenger awareness and decision-making. This includes dynamic information for crowd control, passenger flow, and incident response, leading to an increasing use of digital signage, and other mobile applications.
Signalling is a safety- and service-critical metro asset. Across CoMET and Nova metros, signalling is the second-highest cause of delay incidents, and cause approximately half of all delay incidents for very reliable metros. This study analysed information from 26 metros about their signalling equipment, looking in detail at six sub-assets: point machines, interlockings, track circuits, axle counters, train stops, and signal heads. The study compares these sub-assets, including their age, reliability, and inspection/maintenance regimes, and collects initiatives that metros are pursuing to improve signalling reliability.
Metros with older and more traditional signalling systems tend to have more trackside signalling equipment, which may lead to more potential for failure and greater need for maintenance interventions to maintain reliability. To improve signalling reliability metros are rationalising their asset bases, as well as pursuing both solutions that can be retrofitted into their existing systems and new systems such as CBTC.
The Digital Transformation of Metros study reviewed the strategies, initiatives, and technologies used by metros to implement digital transformation for four key purposes: safety improvement, station operations and management, train operations, and depot management. In recent years there have been several digital trends observed in metros, including provision of real-time train loading information, centralised station management, customer-facing staff equipped with tablets, installation of passenger counting equipment, etc. Metros’ long-term digital transformation plans typically involve multi-phase programmes with strong support from management, employee expertise, and partnership with external parties. Ultimately, digital transformation is highly related to transforming employees. Therefore the study summarised metros’ good practices to create a digital culture, as well as ways to remove barriers along the journey to digital transformation.
Bangalore Metro Rail Corporation Limited (BMRCL) has joined the Nova group of metros. BMRCL constructs and operates the Namma Metro (which means ‘Our Metro’) which serves Bangalore, the capital of India’s southern Karnataka state and the third most populous city in the country.
The first part of the system opened in 2011, and Phase 1 was completed in 2017. The system now features 42.3km that is 80% elevated and 20% underground on two lines: Purple (east-west) and Green (north-south). There are 40 stations and an estimated approximately 130m annual passenger journeys. Phase 2 is now under construction, with sections expected to open between now and 2023 that extend both existing lines and add three new lines (with an additional 93km).
The Railway and Transport Strategy Centre (RTSC) at Imperial College London has a new name! In 2019, we became the Transport Strategy Centre (TSC) recognising the broad reach of our team’s work. The TSC works across public transport modes – metros, railways, buses and light rail, as well as airports.
For more information about the TSC and our work, please see our main website here.
Tokyo Metro has joined the CoMET group of metros. Their system is the oldest in Asia, dating to 1927 with the opening of the Ginza Line. Privatised in 2004, Tokyo Metro is owned by the national and metropolitan governments. The Tokyo Metro network is 195.1km with 179 stations on 9 lines and is renowned for its punctuality. Annual passenger journeys are estimated at more than 2.2 billion, making Tokyo Metro among the densest metros in the world.
Tokyo Metro’s first two lines, the 1927 Ginza Line and 1954 Marunouchi Line, operate on standard gauge track with third rail power and are independent. The rest of the network operates on narrow gauge (1067mm) like the mainline railway network in Japan, with overhead power and operate through services connecting to various suburban railways. We look forward to working with Tokyo Metro on benchmarking going forward.
Sydney Metro has joined the Nova group of metros. It is a new fully automated (GoA4) metro system being built in Sydney, Australia’s largest city. The first section, known as Sydney Metro Northwest, opened in May 2019 with a 4-minute peak headway. The initial segment features 23km and 8 stations newly built and the existing 13km, 5-station Epping to Chatswood rail link (which opened in 2009 and was operated by Sydney Trains until closing in September 2018 for metro conversion).
Currently passengers interchange onto Sydney Trains services at Epping and Chatswood to continue to central Sydney, but Sydney Metro City & Southwest is currently under construction and will extend the line a total of 31km, including a new tunnel under Sydney Harbour and the Central Business District and the takeover of another existing Sydney Trains line in the southwest area, scheduled for 2024.
Nova celebrated its 20th birthday at the Phase 20 Annual Meeting, held in London and hosted by the Railway and Transport Strategy Centre (RTSC) at Imperial College London. 22 members of the Community of Metros (17 Nova members and 5 CoMET members) attended the Annual Meeting and Metro Leader Day, held on 8th – 11th May 2018. Representatives from new members at Bay Area Rapid Transit (San Francisco) and the Roads and Transport Authority (RTA) in Dubai were warmly welcomed for their first meeting.
The meeting focused on Phase 20 benchmarking results, including Key Performance Indicators, case studies on Escalator Management and Security on Metros, as well as wider studies from the Community of Metros on Enhancing Platform Safety Without Platform Doors and Using Data to Improve Maintenance. Members presented an update on their metro’s current activities and plans, giving insight into shared challenges and opportunities. The meeting also included the annual Nova Metro Leader Day, focused on strategic-level discussions on topics of interest, such as managing ageing assets and metro automation. The Group also celebrated Nova’s 20th birthday throughout the week.
As well as meeting activities, members visited London Underground facilities across two technical visits. These visits included a guided tour of Tottenham Court Road station, which has undergone significant works in preparation for the opening of the Elizabeth Line, and as part of an area-wide regeneration plan. Members also rode the new Elizabeth Line rolling stock from Liverpool Street to Stratford, where they heard more detail on the development of the line as it prepares to open. Members also visited Transport for London’s operational control centres where the Underground and surface transport networks are monitored and optimised.
Our site uses functional and strictly necessary cookies only. For more details on the cookies we use, please see our cookie notice.AcceptCookie Notice