Research: Planning and Scheduling Work Affecting Revenue Service

All metros must carry out work to enable continued operations and to ensure safety and reliability. These works include not only routine maintenance (which occurs on an ongoing basis) but also periodic work to renew, upgrade, or even replace assets. While every effort is made to conduct these works outside of revenue service hours (during the few overnight engineering hours that most metros have), the volume and scale of some works ultimately require more extensive closures that impact revenue service. This study investigated how metros design work plans, manage and govern track access, and communicate work to customers.

Approximately half of responding metros allow work to impact revenue service, and with increasing demand and ageing infrastructure this seems likely to increase in the future. In general, metros are using three key criteria to determine whether a project should be allowed to affect revenue service: whether the disruption is unavoidable, how urgent the work is, and whether alternative transport can cope with the added demand. In terms of service design during work, selecting the right service strategy is not straightforward. Metros need to balance the impacts of different approaches on operations (e.g. resource needs), maintenance, customer service, and revenues. Finally, in terms of communicating service information, social media is a primary form of communication with customers now, but a mix of channels is still needed to ensure that metros’ diverse audiences are reached.

Research: Planning for Major Events

Public transport is essential to the success and feasibility of major events, and most major cities with metros are likely to host at least one large-scale event over a 15-year horizon. A 2014 Nova case study captured members’ experience with hosting a wide range of events and covered the entire timeline of hosting a major event, as illustrated below.

Metro Timeline for Hosting a Major Event – from upfront activities to lessons learned
Metro Timeline for Hosting a Major Event – from upfront activities to lessons learned

The study found that early and active involvement in major event planning – which can include major capital projects – is very beneficial for metros, as is conducting their own demand forecasting. The long lead-time for most major events also allows for metros to learn from each other and visit metros hosting the same or similar events. Despite the short-term nature of most major events, metros gain the most value from retaining longer-term improvements, whether transformational or incremental.

The study demonstrated that while major events can present challenges to metros, many metros are using them successfully as opportunities to showcase their existing good practices, experiment with new ones, identify needs, and leverage funding.

Research: Unattended Train Operation

RTSC’s recent research into unattended train operations (UTO) has investigated the role of human operational support on UTO lines. In doing so, a key finding relates to the use of attendants or train captains – metro staff members who are based in the passenger car, rather than in a separate driver’s cab. Formal definitions of Grades of Automation as in IEC-62290 assume that if a staff member is onboard, they are fulfilling a necessary role, in operating the train, as in London’s Docklands Light Railway where attendants close the doors. The assumption is therefore that lines capable of being operated unattended (Grade of Automation 4) are operated unattended. This research study has found that in fact some metros with GoA4 lines actually use attendants on all trains for other reasons, for example to provide customer service. This has led RTSC to describe this type of line as ‘Attended GoA4,’ reflecting the fact that it fits the specification for a GoA4 line as described in IEC-62290, but is not being operated unattended. The diagram below illustrates how ‘Attended GoA4’ automation fits in with the grades of automation.

Adapted from IEC-62290 for the purposes of demonstrating differences in the real-world operational application of the formal Grades of Automation (GoA1-4) defined in the standard.
Adapted from IEC-62290 for the purposes of demonstrating differences in the real-world operational application of the formal Grades of Automation (GoA1-4) defined in the standard.

The case study explored in more detail the actual staffing levels used or planned on participating metros’ automatic lines. The total number of operational staff was compared with the number of assets (stations and trains) in service, providing metros with a useful benchmarking metric that normalised for differences in line length and service level. A typology of staffing models was also developed and linked with associated staffing levels. This work on staffing was complemented by investigation into the technologies required to enable automation; their costs; and metros experiences with their reliability.

This research was presented as a poster at the 94th Transportation Research Board of the National Academies Annual Meeting in Washington DC, in 2015.