Research: Safety Culture

Safety still remains a challenge despite sizeable investments in making the equipment and hardware safer for metros. The most significant barrier to enabling a continuous improvement in safety is to understand and alter the safety culture of the organisation. A model for the improvement of an organisation’s safety culture was developed through the study.

A reasonable level of safety may be achieved through adherence to external regulations, robust processes, good training schemes and an organisational structure which devotes senior management attention safety, defining an organisation ‘practicing safety’. However, a culture which constantly prioritises safety and is aware of the implications of every action it takes is hard to build and maintain.

To fully become an organisation that is always ‘thinking safety’, three key linked behaviours are required, including (1) excellent measuring and monitoring of safety performance, which, in turn, enables (2) the transparent enforcement of standards in a fashion which balances safety and individual accountability, feeding into (3) a robust procedure to investigate and learn from errors.

Continual effort is required to improve in all areas of the safety culture model. The creation of trust is key to enabling a good safety culture, alongside a balance between enforcement of standards and practices and accountability of actions.

Research: Best Practices in Operating Very High Frequency Metro Services

Increasing service frequency is identified as the primary shorter-term strategy to increase capacity. Maximising frequency on existing lines makes the best use of the expensive metro infrastructure. This study identified best practices in operating very high frequency metro services exploring the means and methods used to achieve high frequency service.

Several CoMET and Nova metros operate one or more very high frequency line (30 trains per hour or more) and many have plans to increase service frequencies. Although almost all metros reported a desire to operate higher frequencies, a wide range of constraints impedes them. Constraints were grouped into five categories with corresponding best practice shown below:

Examples of how metros have dealt with these constraints include:

  • Signalling and Train Control: adopting moving block signalling and Automatic Train Operation.
  • Station and Train Crowding: preventing door re-opening and restrict overcrowding (for example by holding passengers in interchange corridors) to optimise throughput.
  • Terminal Turnaround: enabling multiple trains to turn around simultaneously and clear trains of passengers faster.
  • Service Complexity: introducing separate tracks at intermediate terminals so that terminating trains do not block the following through trains.
  • Fleet: improving availability, compensating through different service patterns.

Research: Management of Electronics Maintenance

Maintaining the electronics that support rolling stock fleets entails both repairing technology and managing obsolescence issues.  Metros’ strategy choices for electronics maintenance and repair include using in-house resources, outsourced, or a mix of both approaches. The study provided an overview of the key drivers and emerging issues related to electronics maintenance strategy. A balanced analysis considering costs of establishing and maintaining in-house staff and facilities, as well as the danger of over-reliance on outsourcing and losing the ability to remain an ‘Intelligent Customer’ should be taken into account.

A key role played by in-house teams is in the acquisition of spare parts, as obsolescence or supplier choices and finances lead to shrinking stock. Several approaches were discovered, from contractual agreements to a continuity of supply of spares, the use of alternative components and reverse engineering of parts.

As the lifecycles of electronics components are generally considerably shorter than the expected life of a train and its key subsystems, spares and supply management are essential to support the continued availability of electronics components. Regardless of the approach taken to ensuring sufficient supply of spares, developing strong relationships with key suppliers as well as leverage to maintain a strategic position appear to be a major success factor in managing electronics maintenance.

RTSC presents big data research to President Xi Jinping

Chinese President Xi Jinping visited Imperial College London on the 21st October. As a result of a collaboration between the RTSC, Shanghai Metro, and the Data Science Institute (DSI) of Imperial, the Presidential visit included a presentation on the analysis of smartcard data for the Shanghai Metro network.

PresidentialVisit02

Our main research objective was to improve our understanding of demand patterns captured in smartcard data. We visualised passenger flows entering and exiting Shanghai metro stations using the extraordinary visualisation capabilities of the KPMG Data Observatory of DSI. The Data Observatory is the largest of its kind in Europe, featuring an enveloping circular wall of 64 monitors powered by 32 computers facilitating 313 degrees of surround vision.

In the second part of the presentation we visualised a simulation scenario for a hypothetical train service disruption. This allowed us to predict how temporary demand shocks would spread through other parts of the network. Studying disruption scenarios enables operators to prepare for unexpected events and improve the resilience of urban rail networks.

The Presidential visit proved to be an excellent opportunity to showcase the RTSC’s recently developed competences in big data analysis, and the potential of smart card data in cutting edge public transport research.

Research: Multifunctional Staff

Nova members have identified a need to innovate to increase staff productivity levels, and asked RTSC to investigate how metros around the world have used multifunctional staff. A wide variety of multifunctional roles were identified, classified into six broad types as shown below.

multifuncitonal roles

The best multifunctional staff roles fill in what would otherwise be unproductive time, with productive activity. This is often accomplished by matching functions that need to be done at separate times of day or functions that can be slotted in between other activities in a single location, such as light maintenance within stations.

Multifunctional working also has an important role at increasing staff satisfaction. By combining tasks, staff have the opportunity to work in a more varied and interesting role. This can improve the attractiveness of the metro as an employer and improve staff motivation. For example, one metro recorded reduced absenteeism among their most multifunctional staff. Multifunctional roles can also create a career progression – especially for staff who are technically excellent but do not necessarily want to manage other people.

Research: Understanding and Using Service Performance Data

Service performance measurements are crucial for understanding how metro services are running, so obtaining and leveraging accurate data in the form of useful metrics is key to improving performance. This research project aimed to understand what metrics metros are using to manage their service performance, including their precise definitions, and what methods they use to obtain the required data.

Five categories of service performance measurements help to answer the most important management questions about service performance. A comprehensive system of KPIs needs to comprise a balanced set of service performance measurements covering all five categories.

What do metro managers need to know?
What do metro managers need to know?

There is a need to measure both the actual delay to train service and the impacts of train delays on customers. Too much emphasis on the measurement of train service production and train service performance can be at the expense of other elements of service quality and the actual customer experience. One achievable approach is to use headway-based measurements, which reflect the waiting time for customers on platforms. Another is to weight delay measurements by the number of customers on the train at the time.

There is a clear trend towards more customer-focused measures, which are more difficult to measure but better reflect the actual customer experience. This trend is being driven primarily by technology, such as modern signalling/train control systems and smartcards (i.e. tap-in / tap-out systems). These new data sources are making it easier for metros to collect the data required for more customer-focused metrics.

Trends in service performance data collection, management and analysis
Trends in service performance data collection, management and analysis

Research: Station Management and Mobile Technology

Modern technology offers significant opportunities to improve station operations and the customer experience. At the same time this new technology is changing the nature of communications between staff and passengers.

This study found six key trends in terms of station staff organisation and management across the Community of Metros:

  1. There is significant opportunity for many CoMET and Nova metros to rapidly and relatively cheaply improve customer information and assistance using remote and mobile technology.
  2. Remote monitoring of safety-critical systems (i.e. watching an escalator on CCTV) is currently preferred to remotely controlling the system (i.e. turning an escalator on or off), even when that capability exists.
  3. Some metros are beginning to use mobile applications to support staff operations, such as allowing staff to monitor and control CCTV, make public address announcements, or look up asset information from electronic manuals.
  4. The application of mobile devices in station asset management currently focuses around inspections rather than more direct forms of asset control.
  5. Metros are not creating overarching policies for the deployment of mobile technology, but instead choosing to focus on the end objective of improving customer experience and business productivity with whatever technology facilitates the task.
  6. There is significant variation across the group in terms of hardware, software and practical use of devices.

We also identified five key trends in terms of station staff organisation and management across the Community of Metros:

  1. Supported by electronic ticketing and self-service technology, ticketing staff roles are evolving to focus on broader customer assistance and increased visibility around stations.
  2. There is increasing use of multi-functional staff across the Community of Metros, as well as an increase in their capabilities and responsibilities.
  3. Metros are deploying increasing numbers of roaming staff, across a range of station operations.
  4. Metros are dividing their network into a higher number of station control zones that each contain fewer stations, with benefits for local knowledge, staff camaraderie and teamwork.
  5. Metros increasingly have one staff member per group performing a single coordinating role, responsible for both customer services and assets across a small group of stations.

Research: Rolling Stock Replacement vs. Refurbishment

This research project examined metros’ practices when making the decision of whether to replace or refurbish ageing rolling stock.  As annualised expenditure on rolling stock is typically about 20-25% of total operating costs, fleet investment decisions have significant impacts on overall metro costs.  The focus of the study was to identify key factors and criteria in deciding to replace or refurbish rolling stock at end of nominal life, including the risks and opportunities of life extension beyond initial design life; to identify best practices in design, specification and planning of refurbishments; and to advise metros on appraisal and business case development process, parameters and assumptions.

Metros have been gaining increasingly significant benefits through refurbishment, and many metros (especially newer ones) are now undertaking or planning refurbishments to ageing fleets that are approaching or past their initial design lives.  These refurbishment programmes are designed to extend initial design lives by as much as 15-20 years.

Cost saving opportunities of refurbishment
Cost saving opportunities of refurbishment

A key guiding principle is that refurbishment prolongs ‘more of the same’, as reliability following refurbishment tends to remain fairly similar. Therefore, only highly reliable fleets are usually worth refurbishing. A second principle is that most metros limit the extent of technology change attempted through refurbishment. So if significant upgrade is required, for example to enable unattended train operations, generally a new vehicle is preferred.

This case study has successfully assisted CoMET and Nova members in their decision-making. An Asian member needed to buy new trains when their 15-year-old line was extended and re-signalled. Findings from this report assisted with their decision to replace all the trains on the lines, instead of converting the older trains to work with newer signalling and then operating a mixed fleet. Conversely, Montréal STM used this research in support of a decision to refurbish their 40-year-old MR-73 cars and extend their life to 60 years. This is projected to save Quebec taxpayers nearly $500 million over the next 20 years. More information on Montréal’s decision can be found here.

Research: Initiatives for Increasing Primary Revenue from Passengers

For most metros, a steadily growing passenger demand and revenue is important for future sustainability. This 2014 Nova case study captured good practice initiatives that members have implemented in their metros to increase the revenue they receive. This study also looked at how the regulatory and political environment affects a metro’s ability to implement these strategies and what methods were being used to measure and forecast demand.

Several of the factors that influence metro demand and revenue are to some extent within a metro’s influence, such as the quality of service, the provision of amenities within stations, and price. However, external factors tend to have the largest impact on demand and there is little metros can do to influence these, at least in the short to medium term.

Factors (Within and Outside Metro Control) Influencing Metro Demand
Factors (Within and Outside Metro Control) Influencing Metro Demand

Members stated that fares policy, service frequency and capacity, infrastructure enhancements, and integration with other transport had the greatest impact on their demand and revenue. Yet, they also appear to be the factors that metro operators have the least control over. We argue that in the longer term, these factors can be strongly influenced by metros but clear and proactive engagement with all city actors such as the Transport Authority or Government is required.

Good practice metros undertake a detailed analysis of their market segments to understand both existing and potential customers. Separating out different customer segments and journey stages may enable operators to exploit previously un-tapped or poorly captured markets. Metro operators should conduct proper advance business case analysis to understand the overall expected revenue impacts and associated costs of proposed demand growth initiatives. Even if forecasting or modelling demand and revenue is done by the transport authority, metros can always benefit from having their own models. This enables metros to make a stronger case to the transport authority about the effects of a particular action.

The most effective strategies implemented by metros included:

  • Bus feeder and bus integration systems which complement metro services and improve access to the metro;
  • Short extensions, infill stations and station upgrades that provide strategic opportunities to improve access to new markets,
  • Increasing off-peak service provision (evening, weekend and inter-peak) at low marginal cost to open the metro up to new or underutilised markets;
  • Targeted fares products to encourage off-peak travel and fill underutilised capacity; and
  • Integrated ticketing platforms and joint promotion that attracts alternative markets.

Research: Planning for Major Events

Public transport is essential to the success and feasibility of major events, and most major cities with metros are likely to host at least one large-scale event over a 15-year horizon. A 2014 Nova case study captured members’ experience with hosting a wide range of events and covered the entire timeline of hosting a major event, as illustrated below.

Metro Timeline for Hosting a Major Event – from upfront activities to lessons learned
Metro Timeline for Hosting a Major Event – from upfront activities to lessons learned

The study found that early and active involvement in major event planning – which can include major capital projects – is very beneficial for metros, as is conducting their own demand forecasting. The long lead-time for most major events also allows for metros to learn from each other and visit metros hosting the same or similar events. Despite the short-term nature of most major events, metros gain the most value from retaining longer-term improvements, whether transformational or incremental.

The study demonstrated that while major events can present challenges to metros, many metros are using them successfully as opportunities to showcase their existing good practices, experiment with new ones, identify needs, and leverage funding.