Research: Incident Response & Recovery: Phase 2 Study and Workshop

Following the success of the CoMET 2011 case study on Improving Incident Response and Recovery, a drill-down study was proposed to understand some of the best practices identified in more detail. The drill-down study added to the detailed incident data collected in Phase 1 and completed a more disaggregated analysis of the data, looking at detailed causes and the durations associated with incidents of different causes. An area of particular interest to the case study sponsors was the organisation of incident management, and here the ‘strategic-tactical-operational’ (gold-silver-bronze) structure adopted in two European metros was recommended. The sponsoring metro has since contacted these metros to learn more about this structure.

A crucial part of this Phase 2 study was a workshop, bringing together incident response experts from ten CoMET and Nova metros, as well as two members of CoMET and Nova’s sister benchmarking group for suburban railways, ISBeRG. This workshop resulted in the development of 14 ‘golden rules’ for incident response and recovery, which provide clear and concise guidance to metros and have since been adopted by a European metro. Similarly, an American metro is implementing best practices from the case study in resource distribution, infrastructure maintenance, and emergency response. A key recommendation arising from the workshop was the use of ‘hot debriefs’ to ask staff how the management of an incident could have been improved, immediately after the event; this good practice has since been taken on by a European metro.

Research: Train Driver Productivity

A Nova research study on train driver productivity aimed to identify the most important factors that influence driver efficiency, understand what methods operators have successfully used to modernise restrictions to working arrangements and identify the scope for metros to modify the most important constraints, rules and parameters that have a negative effect on both driver productivity and costs.

The study found that metros need to have sufficiently flexible labour rules to achieve higher levels of driver productivity. Correlating the level of working time flexibility with driver productivity showed that less restricted metros were more productive than metros that face stricter constraints. Organisations with part time drivers and / or the ability to utilise split shifts were associated with higher levels of driver productivity and increased effectiveness of driver time at work (better able to cover ‘peaks and troughs’ in service). Moreover, it was found that variable shift lengths were arguably more effective than split shifts for metros with a flatter service profile, allowing metro managers to adjust shift schedules as necessary and to avoid the build up (unproductive time) of staff during less busy and off peak periods. In the long term, savings from increased flexibility could more than offset the higher driver wages associated with greater flexibility. Increasing automation of train services through automatic train turnaround, remote booking-on for drivers and driverless trains can positively influence driver productivity and allow driver roles to be deployed more effectively through more customer facing roles.

It is hoped that the information contained within this study can be used to support negotiations with labour unions, government and other key stakeholders by showing evidence of how “imposed” restrictions may impact an organisation’s ability to improve and manage productivity.