Metro News: Preventing fare evasion in Moscow

Moscow Metro has recently completed trial operation of devices that prevent jumping over turnstiles.  The devices are inexpensive triangular steel structures installed on top of the turnstile, which prevent fare evaders jumping over the turnstiles by leaning on the turnstile’s cover with their hands.

According to observations of metro workers since the trial began in Tsaritsyno station, incidents of jumping over the turnstiles has dramatically reduced, and revenues from the sale of tickets at cashier office had increased. If the full analysis shows positive results, these devices will be installed in other busy metro stations.

Fare evasion prevention pyramids
Pyramids prevent jumping over the barriers

Metro News: Sydney’s unique contract design underpins train performance

About half of Sydney’s suburban fleet has been replaced, in a $3.5Bn Public-Private Partnership (PPP). It is the largest passenger fleet procurement in Australian history, replacing non-air-conditioned rolling stock and providing for future growth. This required a robust commercial and operational framework for a contract term which exceeds 30 years.

In 2004, the NSW railway operator RailCorp took an innovative approach. At the very beginning of the procurement process, rather than at the typical point of signing contracts, it appointed a project delivery leader to establish an integrated commercial, operational, technical and delivery management team. This has been a main contributor to a successful PPP contract, which was structured to underpin safety, quality control, and reliability over 30 years. This specialist team provided input into the final contract design and performance specifications based on previous new fleet deployments.  The delivery team has also proved invaluable in overseeing implementation, from the build phase through to passenger service.

One of the unique features of this PPP contract is that it does not contain typical liquidated damages penalties (although, the separate contract between the consortium’s manufacturer and TLS provider does include liquidated damages).  Instead, the contract relies on several ‘incentivising’ payment mechanisms aligned to drive desired performance outcomes. The payment system promotes behaviour that reduces the need for the NSW railways operator to actively enforce the contract. At the heart of the contract are performance-based payments that require 72 of the 78 trains to be made available for passenger service each day. Until the trains are provided and available, Sydney RailCorp makes no payment to Reliance Rail for them.

Another significant factor has been a comprehensive operational-readiness programme. This involved stakeholder and expert consultation during the development phase, to integrate contract requirements with the operational requirements of the operating railway.  This readiness programme involved over 20 enabling projects including people & change management initiatives to support operational efficiencies and the deployment of the new fleet.

These measures have led to one of the smoothest new fleet deployments in the history of NSW. In just over 14 months, 14 eight-car double deck trains (which include 1 spare set) have been introduced into passenger service and accumulated more than a million kilometres in service.  Feedback and internal surveys indicate customers rate the Waratah train as the best train for performance and comfort amongst all existing fleet, including other recent fleet acquisitions. Similarly feedback from crew about the Waratah trains has been positive with train performance in line with expectations.

Metro News: Metro Rio’s “Pit Stop/Bogie Drop” Replacement System

Metro Rio has recently begun using an innovative system for bogie replacement. In the 1980s, Metro Rio rolling stock’s bogies were replaced using four hydraulic jacks (15 tons capacity each) to lift a 42 tonne metro car and drop the bogie. This equipment was obsolete, unreliable and sometimes unsafe. Furthermore, there was no feature to synchronize the rise/descent of the 4 jacks, thus making it a complex operation. These factors lead Metro Rio to develop a different system to replace bogies using a lifting platform coupled to two hydraulic jacks. This system required the maintenance team to uncouple the specific car from the rest of the train to replace bogies, and this single car could only be moved with a maintenance vehicle (as there is no third rail inside the rolling stock maintenance area).

Recently Metro Rio has acquired a new fleet (19 trains with 6 cars) which uses semi-permanent couplings. The process of uncoupling these is time-consuming, making the current bogie replacement process not very effective. That led Metro Rio to design and construct a new bogie replacement system.

Metro Rio's pit stop bogie replacement system
Metro Rio’s pit stop bogie replacement system

The new bogie replacement system is called “pit stop.” A complete train can get into this system without any maintenance vehicle support as the bogie drop facility is located in a single dedicated track with power supply. The bogie is removed without having to uncouple the cars, reducing the downtime considerably. The “pit stop/bogie drop” is particularly useful when a bogie failure happens during service hours and is necessary to get the train back into revenue operation very quickly.

Train using the pit stop system
Train using the pit stop system

Research: Incident Response & Recovery: Phase 2 Study and Workshop

Following the success of the CoMET 2011 case study on Improving Incident Response and Recovery, a drill-down study was proposed to understand some of the best practices identified in more detail. The drill-down study added to the detailed incident data collected in Phase 1 and completed a more disaggregated analysis of the data, looking at detailed causes and the durations associated with incidents of different causes. An area of particular interest to the case study sponsors was the organisation of incident management, and here the ‘strategic-tactical-operational’ (gold-silver-bronze) structure adopted in two European metros was recommended. The sponsoring metro has since contacted these metros to learn more about this structure.

A crucial part of this Phase 2 study was a workshop, bringing together incident response experts from ten CoMET and Nova metros, as well as two members of CoMET and Nova’s sister benchmarking group for suburban railways, ISBeRG. This workshop resulted in the development of 14 ‘golden rules’ for incident response and recovery, which provide clear and concise guidance to metros and have since been adopted by a European metro. Similarly, an American metro is implementing best practices from the case study in resource distribution, infrastructure maintenance, and emergency response. A key recommendation arising from the workshop was the use of ‘hot debriefs’ to ask staff how the management of an incident could have been improved, immediately after the event; this good practice has since been taken on by a European metro.

Research: Train Driver Productivity

A Nova research study on train driver productivity aimed to identify the most important factors that influence driver efficiency, understand what methods operators have successfully used to modernise restrictions to working arrangements and identify the scope for metros to modify the most important constraints, rules and parameters that have a negative effect on both driver productivity and costs.

The study found that metros need to have sufficiently flexible labour rules to achieve higher levels of driver productivity. Correlating the level of working time flexibility with driver productivity showed that less restricted metros were more productive than metros that face stricter constraints. Organisations with part time drivers and / or the ability to utilise split shifts were associated with higher levels of driver productivity and increased effectiveness of driver time at work (better able to cover ‘peaks and troughs’ in service). Moreover, it was found that variable shift lengths were arguably more effective than split shifts for metros with a flatter service profile, allowing metro managers to adjust shift schedules as necessary and to avoid the build up (unproductive time) of staff during less busy and off peak periods. In the long term, savings from increased flexibility could more than offset the higher driver wages associated with greater flexibility. Increasing automation of train services through automatic train turnaround, remote booking-on for drivers and driverless trains can positively influence driver productivity and allow driver roles to be deployed more effectively through more customer facing roles.

It is hoped that the information contained within this study can be used to support negotiations with labour unions, government and other key stakeholders by showing evidence of how “imposed” restrictions may impact an organisation’s ability to improve and manage productivity.